Wait a second...
You are here: UCT Praguestudy.vscht.cz → Vypsané disertační práce

Chemistry and Technology of Materials (double degree)

Chemistry and Technology of Materials (double degree)

Doctoral programme, Faculty of Chemical Technology

Programme is leading to two diplomas from both home university as well as partner university.

Doctoral study of Chemistry and Technology of Materials is a natural consequence of the long-time material research at UCT Prague. The study is based on the cutting-edge physical, chemical and engineering approaches to materials and material technology. Students develop their knowledge about materials; they find and comprehend deeper relationships among preparation and/or production of materials, structure and composition, and their properties. Inevitable part of the study are courses focused to deeper understanding of nature of materials, analytical methods, material characterization, and material technologies.


Graduates become not only leading experts in the field of material science and technology, but thanks to their experience in international teamwork they are predetermined to start their career in academic area, international research and technology corporations, innovative companies, and state government.

Programme Details

Language of instruction English
Standard length of study 4 years
Form of study Full time
Guarantor of study programme prof. RNDr. Ondrej Gedeon, Ph.D., DSc.
Programme Code ADD102
Place of study Prague + partner university
Capacity 4 students
Number of available PhD theses 6

List of available PhD theses

Elucidating the origin of magnetoelectric coupling in Fe4M2O9 phases

Department: Department of Inorganic Chemistry, Faculty of Chemical Technology


Multiferroic materials exhibiting at least two ferroic orders such as ferroelectricity and ferromagnetism are the focus of researchers attention. The magneto-electric coupling is very appealing for applications in devices, such as memories, where the magnetic information has to be controlled by an electric field. The thesis work will focus on the synthesis and the study of the structural/magnetic/dielectric/ ferroelectric properties of Fe4M2O9 mono- and poly-crystals. As these Fe2+ containing oxides exist only for M = Nb and Ta, the thermodynamic stability of these phases will be calculated in connection with their magneto-elastic coupling.

High-entropy alloys prepared by powder metallurgy techniques

Department: Department of Metals and Corrosion Engineering, Faculty of Chemical Technology
Theses supervisor: Ing. Filip Průša, Ph.D.


Since the year 2004, the materials research gained a new way of focusing on special alloys made initially of five elements with equiatomic compositions. The newly discovered group of materials has been since then known as high-entropy alloys (HEA) due to a high entropy of mixing which allows creating predominantly solid solutions instead of intermetallic phases. These materials are known to be exhibiting a variety of excellent properties that often combine high strengths while maintaining good ductility, good corrosion resistance and others.
The work will aim at the description of the microstructure-related properties of high-entropy alloys prepared by powder metallurgy techniques combining mechanical alloying and compaction via spark plasma sintering.

Impact of the magnetism on the thermoelectric properties of oxides and sulfides

Department: Department of Inorganic Chemistry, Faculty of Chemical Technology


Thermopower can be very sensitive to spins and magnetism, and its enhancement has already been observed in oxides, as exemplified in NaxCoO2 or in misfit cobaltites. Recently, the impact of magnetism has been evidenced in ferromagnetic and metallic CoS2 with an extra contribution to thermopower measured in the. In the insulating thiospinel CuCrTiS4, the transport properties are actually very similar to magnetoresistant oxides, with variable range hopping transport associated to a large negative magnetoresistance and magnetothermopower. The aim of this project is to investigate the influence of magnetism on the thermoelectric properties of these sulfides presenting different ground states, to tune and optimize this enhancement of thermopower. A detailed investigation of the thermal properties will also be realized.

Mechanism of the formation of intermetallics in mechanical alloying

Department: Department of Metals and Corrosion Engineering, Faculty of Chemical Technology
Theses supervisor: doc. Ing. Pavel Novák, Ph.D.


Mechanical alloying is a popular technology for the preparation of powders of alloys or intermediary compounds (e.g. intermetallics, carbides or borides) by high energy mechanical milling. The high popularity of the method is given by the fact that it usually leads to nanostructured materials and that even non-miscible elements can create solid solutions during mechanical alloying. Even though the result is known and there are many descriptions available, the mechanism of the formation of intermetallics in this process is not fully understood yet. The reasons are probably in a large variety of possible process parameters and by impossibility to measure the temperature inside the powder in the milling jar. This work proposes following concept: indirect determination of the dependence of the peak powder temperature on milling conditions (rpm, ball-to-powder ratio, ball size) by the use of thermally decomposing salts, comparison of phase composition of the mechanically alloyed powder with the reference powder mixture exposed in the furnace to the detected peak temperature and observation of the time development of the microstructure and phase composition by XRD and electron microscopy (SEM, TEM). The mechanism will be observed on several different systems containing brittle and ductile powders (e.g. Ti-Al, Ti-Si, Ti-Al-Si) and the general conclusion regarding the mechanical alloying mechanism will be formulated.

Preparation of olefin block copolymers

Department: Department of Polymers, Faculty of Chemical Technology
Theses supervisor: doc. Ing. Jan Merna, Ph.D.


The thesis will be focused on the preparation of block copolymers based on olefin and diene monomers by coordination copolymerizations. The focus will be on copolymers with blocks of different properties, e.g. hard and soft blocks. Principles of coordination chain transfer polymerization and chain-shuttling polymerization will be applied. Introduction of polar functional groups will also be of interest. The work will include organometallic synthesis of catalysts, polymerization experiments in presence of various transfer agents and full characterization of obtained polymers.

Structural, Magnetic and Thermoelectric Properties of TM in ZnO / ZnS: Effects of Nano-sizing

Department: Department of Inorganic Chemistry, Faculty of Chemical Technology
Theses supervisor: Ing. Ladislav Nádherný, Ph.D.


In the past ten years, the interest in zinc oxide research in the field of magnetic semiconductors has significantly increased. According to the Zener model, manganese-doped ZnO is one of the systems in which ferromagnetic behavior could be achieved even at room temperature. Since the solubility of magnetic Mn in bulk ZnO is very limited, new approaches to prepare thin films and nanoparticles with higher dopant concentration are used. The aim of this doctoral dissertation is to prepare nanopowders based on ZnO with the highest concentration of Mn as possible. Prepared powders will be characterized by means of XRD, TEM, DSC, DLS, PPMS, and the nanosizing effect on the Mn solubility in ZnO or ZnS will be described.

Updated: 18.2.2020 13:59, Author: Jan Kříž

UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373
VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2017
Information provided by the Department of International Relations and the Department of R&D; technical support by the computing centre.
switch to full version