Wait a second...
You are here: UCT Praguestudy.vscht.cz → Vypsané disertační práce

Measurement and Signal Processing in Chemistry (Czech language)

Measurement and Signal Processing in Chemistry (Czech language)

Doctoral programme, Faculty of Chemical Engineering
CHYBI CHARAKTERISTIKA PROGRAMU

Studijní program je zaměřen na oblasti moderní senzorové techniky, chemických senzorů, modelování, simulace, identifikace a klasifikace (bio)chemických dějů, sběru a zpracování dat z chemických, biochemických a biologických vzorků. Teoretický základ programu tvoří principy funkce senzorů fyzikálních i chemických veličin, metody číslicového zpracování signálů a vybrané kapitoly z aplikované matematiky. Cílem studia tohoto programu je výchova doktoranda k samostatné vědecké práci v oblastech (i) moderních chemických senzorů, (ii) modelování, simulace a analýzy komplexních chemických procesů a (iii) moderních metod zpracování dat primárně z chemických, biochemických a biologických vzorků. Cílem je vybavit studenty pokročilými teoretickými znalostmi i praktickými dovednostmi a vychovat z nich samostatné vědecké osobnosti, schopné dále rozvíjet oblasti teoretického i aplikovaného výzkumu. Program navazuje na magisterský studijní program Senzorika a kybernetika v chemii a vhodně doplňuje nabídku ostatních doktorských programů na Fakultě chemicko-inženýrské. Program se svou náplní nepřekrývá s žádným programem na VŠCHT. Specifický rys studijního programu spočívá v tom, že navazuje na hluboké chemické znalosti studentů VŠCHT Praha a rozšiřuje je směrem k senzorové technice, sběru a zpracování dat z experimentu a k vytváření matematických modelů složitých průmyslových procesů.

Careers

Absolvent je vzdělán multioborově a disponuje hlubokými znalostmi z různých odvětví měřicí a senzorové techniky, modelování chemických dějů, sběru a zpracování signálů. Má přehled v tématech spojených s: (i) konstrukcí a principy fungování senzorů i měřicích systémů a (ii) matematickými a statistickými metodami při zpracování signálů a obrazů. Je veden ke schopnosti pracovat samostatně i v týmu, formulace vědeckého problému, vytvoření koncepce jeho řešení a realizace výzkumu ve všech fázích tohoto procesu. Absolvent bude připraven navrhovat vlastní výzkumné či průmyslové projekty. Získá vědomosti a dovednosti, které mu umožní profesní adaptabilitu v konkrétních podmínkách v oblasti základního a aplikovaného výzkumu, v akademické sféře i v technologické praxi spojené zejména s chemickým a potravinářským průmyslem.

Programme Details

Language of instruction Czech
Standard length of study 4 years
Form of study Full time + Combined
Guarantor of study programme prof. Dr. Ing. Martin Vrňata
Programme Code D405
Place of study Praha
Capacity 20 students
Number of available PhD theses 18

List of available PhD theses

Advanced Methods of Adaptive Filtering for Novelty Detection

Department: Department of Computing and Control Engineering, Faculty of Chemical Engineering
Also available in programme: Measurement and Signal Processing in Chemistry
Theses supervisor: doc. Ing. Jan Mareš, Ph.D.

Annotation

The topic of the work is focused on the development and implementation of the methodology of so-called novelty detection in process data. The project is based on the analysis of selected real (complex) process data. The work assumes (i) study of advanced methods of signal analysis, (ii) design of specific methods and algorithms for adaptive data filtering and novelty detection using the Extrem Seeking Entropy method (iii) implementation and verification.

Advanced Signal Processing Methods in Development of Virtual Control Board

Department: Department of Computing and Control Engineering, Faculty of Chemical Engineering
Also available in programme: Measurement and Signal Processing in Chemistry
Theses supervisor: doc. Ing. Jan Mareš, Ph.D.

Annotation

The project is devoted to design of virtual control board of selected real technological process. The work is based on analysis of selected biomedical data, 3D modelling and virtual reality. The project assumes (i) study of advanced methods of biomedical signal analysis and 3D modelling (ii) the proposal of specific algorithms for virtualisation, 3D modelling and process control, (iii) implementation and verification.

Advanced methods of facial data analysis for the evaluation of the rehabilitation process

Department: Department of Computing and Control Engineering, Faculty of Chemical Engineering
Also available in programme: Measurement and Signal Processing in Chemistry
Theses supervisor: doc. Ing. Jan Mareš, Ph.D.

Annotation

Analysis of biomedical data is currently in great demand, but at the same time quite a difficult task. The project is based on cooperation with the University Hospital Královské Vinohrady and is focused on capturing 3D facial data of patients after depth surgery and analysis of this data. The work assumes (i) the study of advanced methods of image analysis, (ii) the design of a specific methodology and algorithm for data acquisition using various HW tools: Kinect, mobile phone, etc.), (iii) processing of these biomedical data and (iv) implementation and verification in a hospital environment.

Advanced statistical methods and their application on biomedical data

Department: Department of Mathematics, Faculty of Chemical Engineering
Theses supervisor: Mgr. Ing. Pavel Kříž, Ph.D.

Annotation

Biomedical data often show very complex structure (many correlated variables, autocorrelation in time and/or space, high-dimensional data, high-frequency data etc.). Its correct statistical analysis is not a routine, it requires creativity in combination with use of various advanced statistical methods and techniques. The objective of this work is to explore and study advanced methods from different fields of statistics (such as multivariate statistics, time series analysis, functional data analysis etc.) and design their appropriate combinations (or develop their modifications) in order to extract important and useful information from selected biomedical data. Emphasis is put on rigorous approach to assumption verification and results interpretation (incl. assessment of their reliability using exact of simulation techniques).

Application of data mining methods for monitoring and control of biotechnological processes

Department: Department of Computing and Control Engineering, Faculty of Chemical Engineering
Also available in programme: Measurement and Signal Processing in Chemistry

Annotation

In the research of biotechnological processes, experimental data of various structure and quality are generated. However, this highly heterogeneous data contains important information about the properties of these processes. This work is focused on the study and application of selected methods in the field of artificial intelligence and machine learning in the processing of this data. The acquired knowledge will then be used for advanced monitoring and control of the selected model biotechnological process.

Application of spatial analysis methods for forensic sciences

Department: Department of Computing and Control Engineering, Faculty of Chemical Engineering
Also available in programme: Measurement and Signal Processing in Chemistry

Annotation

Most of the data processed within the forensic sciences also includes a spatial component indicating the position of the described objects (eg GPS data). An important part of computer processing of this type of data thus includes the application of advanced methods of spatial analysis to determine selected contexts contained in the data. This work is specifically focused on advanced data processing and analysis describing the findings of various types of projectiles in the investigated terrain.

Computer modelling of non-thermal plasma and electrical discharges

Department: Department of Physics and Measurement, Faculty of Chemical Engineering

Annotation

Scope of this work is the computer modelling of non-thermal plasma in electrical discharges. It may help to clarify the plasma-chemical reactions in discharges and the spatial distribution of generated particles. Work deals with the issue of plasma physics, computer modelling, possible method for the modelling of selected problem and comparison with the experiment. It is also possible to combine this work with the investigation of bactericidal effects of plasma or the interaction with organic structures.

Development of modern electromagnetic radiation shields as passive protection of information against eavesdropping

Department: Department of Computing and Control Engineering, Faculty of Chemical Engineering
Also available in programme: Measurement and Signal Processing in Chemistry

Annotation

The proliferation of modern electronics, integrated circuits, microprocessors and communication and computer technology in general brings with it a high risk of disclosing critical information about the infrastructure in which these elements are used. In the extreme case, there may be a leak or takeover of administrative privileges, which can be misused for digital vandalism, disclosure of important information or attacks on the infrastructure itself. One of the very effective and difficult to detect methods of these attacks is the remote eavesdropping on information that is emanated from electronic devices in the form of electric or magnetic fields. With the development of inexpensive radio technology and as a result of readily available libraries and signal processing algorithms, such an attack may no longer be the sole domain of rich, state-sponsored organizations, but may gradually be adopted by the mainstream hacking community and misused for criminal purposes.
The aim of this work is to explore the possibilities and develop and test light and flexible protective shields based on modern nanomaterials, which will serve as an effective passive protection of electronic devices against remote eavesdropping. For this purpose, new composite materials based on electrically conductive nanoparticles with magnetic properties will be prepared. The possibilities of their compatibility with the carrier, chemical structure and morphology, mechanical, electrical and magnetic properties and methods and the possibilities of their processing into the required shape and form suitable for use in miniature electronics will be studied. The experiments will also include testing passive shields in simulated and real conditions and evaluating their ability to dampen electromagnetic waves emitted by electronic devices.

Elaboration of environmentally benign composites for shielding of electromagnetic interference

Department: Department of Computing and Control Engineering, Faculty of Chemical Engineering

Annotation

The project deals with design of environmentally benign composites in form of flexible free-standing films for electromagnetic interference (EMI) shielding application. The composites will be prepared from bio-sourced cellulose fillers and efficient receptors of EMI (e.g. supramolecular conducting polymers, carbon nanotubes, graphene, etc.) Novel approaches of matrix/receptor compatibilization will be designed. In addition, fundamental aspects governing the behavior of the composites will be studied to understand the interactions occurring between the phases of the composites and the structure-properties relationships. Thorough experiments in the DC and AC electrical field on the composites and their components will be performed to reveal patterns driving the resulting shielding efficiency. Finally, the synergetic effect of both receptors leading to the controllable EMI shielding efficiency by absorption or reflection will be studied.

Hybrid nanosctructured lithium - ion batteries

Department: Department of Physics and Measurement, Faculty of Chemical Engineering
Theses supervisor: RNDr. Pavel Galář, Ph.D.

Annotation

Current rapid developments in wearable electronics, production of electric energy from renewable sources, electric vehicles and other applications emphasizes increasing demands on the energy storage. While the standard lithium-ion batteries (LIB) seem to reach their maximum, new structural solutions are needed. As one of the most promising anode material for LIB technology is considered to be silicon. Silicon based anode has potential to increase storage capacity of the batteries about ten times in contrast to commonly used graphite. Unfortunately the silicon expands its volume by more than 300% during lithium charging that cause significant structural fractures and thus limits application of bulk silicon in LIB technology. The goal of this work is to study the applicability of nanostructured silicon as a part of LIB anodes and advanced flexible organic materials as electrode scaffold materials that would be electrochemically stable, highly conductive and strong and elastic enough to withstand the nanocrystal expansion.

Preparation and characterization of silicon nanoparticles using non-thermal plasma technique

Department: Department of Physics and Measurement, Faculty of Chemical Engineering
Theses supervisor: RNDr. Pavel Galář, Ph.D.

Annotation

Since the observation of efficient room-temperature photoluminescence (PL) of silicon nanocrystals (Si-NCs) these nanostructures have attracted significant attention. Much effort has been made to develop optimal preparation techniques and post preparation treatments of Si-NCs that would provide sufficient amounts of Si-NCs bearing properties specifically designed for a particular application (solar cells, light generation, bioimaging, biology and medicine etc.). One of the most promising preparation/termination techniques of Si-NCs proved to be the application of non-thermal plasma (NTP, radio frequency or dielectric-barrier discharge). In contrast to other techniques, the application of non-thermal plasma is capable of synthesising orderly higher amounts of Si-NCs (about 1mg/min) lacking of chemical artefacts. Student will optimize the preparation of Si-NCs by non-thermal plasma. Student will be opimiting mainly composition and flow of working and carring gas, plasma source power and studing the influence of ambient conditions on SI-NCs properties. Properties of NCs will be characterized mainly by time integrated and resolved photoluminescence spectroscopy and EDS.

Processing of chemical sensor signals using artificial intelligence algorithms

Department: Department of Physics and Measurement, Faculty of Chemical Engineering
Theses supervisor: prof. Ing. Dr. Martin Vrňata

Annotation

One way to improve the selectivity and detection properties of modern chemical sensors is to use artificial intelligence algorithms. The topic of the thesis is to design, prepare and test new approaches for processing and extracting data from multi-component sources such as GC / IMS spectrometer, sensors and sensor arrays with response in the visual, infrared and radio-frequency fields of the electromagnetic spectrum. The solution assumes usage of hardware acceleration of data processing and software-defined radio.

Protective shields for autonomous systems against electromagnetic interference

Department: Department of Computing and Control Engineering, Faculty of Chemical Engineering
Also available in programme: Measurement and Signal Processing in Chemistry

Annotation

The rapid advent of autonomous systems such as robotic assistants, drones or self-driving vehicles has inevitably brought with it an increase in the use of positioning devices, such as microwave sensors, or advanced lidar, radar or radio technology. This also increases the likelihood of the occurrence of undesired interferences of this electromagnetic wave with the integrated circuits of the autonomous device, which may in turn lead to an increased probability of the occurrence of dangerous phenomena, including accidents and loss of life.
The aim of this work is therefore to develop new materials for the attenuation of electromagnetic interference and to apply them as protective shields in the operating area of the electromagnetic spectrum of existing positioning systems. The work will focus on the search, synthesis and characterization of suitable electrical and magnetic materials and their nanostructured analogues and the subsequent design, manufacture and testing of new lightweight and flexible shields. Part of the work will also be modelling and evaluation of the shielding efficiency of protective shields in simulated and real conditions of operation of autonomous systems.

Sensor arrays of tactile temperature and pressure sensors

Department: Department of Computing and Control Engineering, Faculty of Chemical Engineering
Also available in programme: Measurement and Signal Processing in Chemistry

Annotation

Tactile temperature or pressure sensors are devices used in robotics to evaluate the robot's interaction with other objects. These include, for example, manipulating an object, measuring the slip of a gripped object, determining the coordinates of the position of the object or measuring the magnitude of the force acting on the object. The extreme case is complex tactile systems, the purpose of which is to simulate and replace human touch. The sensors used for these purposes must be sufficiently miniature, sensitive to small changes in pressure, must have favorable dynamic properties and time and operational stability of the parameters. Due to the expected high density of tactile sensors connected in simple applications, there must be the possibility of their operation in the form of sensor arrays and data processing using advanced mathematical and statistical algorithms. Last but not least, the cost of producing them must be reasonable so that they can be easily replaced in the event of wear.
The aim of this work is therefore to develop new types of tactile temperature and pressure sensors based on modern nanomaterials, which can be used in experiments with the measurement of temporally and spatially distributed forces acting on the matrix of sensors. Part of the work will be the preparation, characterization and processing of thermoelectric and piezoresistive materials based on organic nanostructured semiconductors and carbon nanostructures. Testing of these substances will include, inter alia, structural, chemical and mechanical analysis and measurement of electrical properties in both direct and alternating electric fields. Selected materials will then be processed into sensitive sensors. Part of this work will also be the design of sensor arrays and their testing and signal processing using advanced algorithms.

Software sensors for monitoring of bioprocesses

Department: Department of Computing and Control Engineering, Faculty of Chemical Engineering
Also available in programme: Measurement and Signal Processing in Chemistry

Annotation

The quality of process control of biotechnological production processes used in the pharmacy and food industry is often constrained by the limited possibilities of on-line measurement of key process parameters (e.g. cell concentration, growth rate, production rate, etc.). One possible solution is the use of software sensors to continually estimate the values of key process indicators from on-line measurable process variables. The proposed work is focused on the study and application of the above methods for advanced monitoring of a selected biotechnological process.

Synthesis and characterization of composite materials for silicon-based batteries

Department: Department of Computing and Control Engineering, Faculty of Chemical Engineering

Annotation

Silicon is considered as the most promising anode material for the next-generation Li-ion batteries because of its high theoretical specific capacity, wide elemental abundance and low discharge potential. Yet there are still too many serious issues that must be resolved before Si-based batteries are utilized, mostly related to the huge volume expansion of Si upon lithiation and the formation of the superficial oxide layer. Here we propose to develop tailored conductive and flexible matrixes based on nanoengineered Si nanocrystals (SiNC) embedded in a conductive and flexible carbon-based matrix that would incorporate a combination of binding, elastic, and conducting properties. Fundamental mechanisms related to the initial and long-term degradation of capacity in the nanosilicon materials will be investigated and conclusions will be drawn.

The importance of topological indices for determining the similarity of molecules

Department: Department of Computing and Control Engineering, Faculty of Chemical Engineering
Also available in programme: Measurement and Signal Processing in Chemistry
Theses supervisor: doc. Ing. Jan Mareš, Ph.D.

Annotation

Using molecular descriptors, it is possible to mathematically describe molecules. This is applied in many fields where it is necessary to look for new substances with specific properties or to predict unknown properties of substances. An important type of molecular descriptors are the so-called topological indices, which characterize a given molecule according to its size, degree of branching and overall shape. The work assumes (i) study of various types of molecular descriptors, especially topological indices (ii) study of correlations of specific topological indices with properties of molecules (iii) comparison of algorithmic complexity for calculation of specific topological indices (iv) implementation of selected algorithms for calculation of specific topological indices.

Transport of charge carriers in nanostructured and nanocomposite materials

Department: Department of Physics and Measurement, Faculty of Chemical Engineering
Theses supervisor: Ing. Přemysl Fitl, Ph.D.

Annotation

The topic of the thesis is theoretical and practical study of charge transfer mechanisms in nano-structured and nano-composite materials prepared in the form of thin films, coatings and aerogels. The aim of the thesis is to design models describing the charge transfer in real materials used for chemical sensors. The properties of the nanostructured samples will be measured in the Quantum Design - PPMS system, depending on the temperature and intensity of the magnetic field. The work involves (i) modeling and simulating the transport of charge carriers using the finite element method, (ii) designing and implementing software for managing, collecting and processing data obtained from PPMS system; (iii) seeking an analytical model describing the real (measured) properties of the samples depending on their nanostructure.

Updated: 18.2.2020 13:59, Author: Jan Kříž

UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373
VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2017
Information provided by the Department of International Relations and the Department of R&D; technical support by the computing centre.
switch to full version