Wait a second...
You are here: UCT Praguestudy.vscht.cz → Vypsané disertační práce

Chemické a procesní inženýrství (double degree)

Chemické a procesní inženýrství (double degree)

Doctoral programme, Faculty of Chemical Engineering

Programme is leading to two diplomas from both home university as well as partner university.

Cílem dvojitého doktorského studijního programu Chemické a procesní inženýrství ve spolupráci s KU Leuven je vychovávat odborníky se širokým spektrem znalostí, které umožní uplatnění v akademické i průmyslové sféře v ČR i zahraničí. Studenti jsou podrobně obeznámeni jak s teoretickými základy chemického a procesního inženýrství, bioinženýrství a materiálového inženýrství, tak s experimentálními a praktickými aspekty oboru. Tím si vytvoří předpoklady pro základní nebo aplikovaný výzkum zaměřený na chemické a procesní inženýrství, ale také na další obory, jako je materiálové inženýrství, bioinženýrství a informatika. Studenti díky dvojité formě doktorského studijního programu získají diplom na VŠCHT Praha i na KU Leuven, cenné odborné i jazykové zahraniční zkušenosti, mezioborové znalosti a dovednosti, které zvýší jejich konkurenceschopnost a možnost uplatnění na českém i mezinárodním pracovním trhu. Využity jsou jak přednosti VŠCHT Praha, spočívající v odborném zázemí špičkových akademických pracovníků a vybavení moderní přístrojovou technikou, tak i silné stránky KU Leuven s rozšiřujícím vzdělávacím a výzkumným profilem.

Careers

Absolvent studijního programu získá odborné znalosti, které zahrnují teorii přenosových jevů, termodynamiku, reaktorové inženýrství, teorii kontinua a hydromechaniku, materiálové inženýrství a chemicko-inženýrské aspekty péče o životní prostředí. Speciálními znalostmi jsou pak aplikovaná informatika, matematické modelování, metody nelineární dynamiky, numerické metody a programování při vědecko-technických výpočtech. Absolventi najdou uplatnění v orientovaném či aplikovaném výzkumu v chemickém, procesním, materiálovém a farmaceutickém průmyslu a v bioinženýrství, ale i v manažerských funkcích při řízení výzkumu či vývoje. Mohou se rovněž uplatnit v akademické sféře jak na vysokých školách technického zaměření, tak při základním výzkumu v ČR i v zahraničních výzkumných institucích. Absolventi s dvojím diplomem na VŠCHT Praha i KU Leuven budou i díky intenzivní mezinárodní zkušenosti schopni přinášet nové trendy ve vědě, výzkumu a inovacích, a přispějí tak ke zlepšení konkurenceschopnosti našich firem a institucí ve světovém srovnání. Významnou výhodu představuje absolvování části studia na renomované zahraniční univerzitě, kde získají posluchači nejen rozšiřující odborné znalosti, ale rovněž mezinárodní zkušenost a jazykovou dovednost.

Programme Details

Language of instruction Czech
Standard length of study 4 years
Form of study Full time
Guarantor of study programme doc. Ing. Petr Kočí, Ph.D.
Programme Code DD401
Place of study Praha + partnerská univerzita
Capacity 5 students
Number of available PhD theses 5

List of available PhD theses

Characterization and modelling of dispersion systems with variable viscosity

Department: Department of Chemical Engineering, Faculty of Chemical Engineering

Annotation

The goal of this project is to characterize and model systems where viscosity of the dispersed phase is rising during the process. Typical examples are emulsification, suspension polymerization or spherical agglomeration. The student will start with simplified system composed of two liquid phases with various viscosities, which will be analyzed by on-line sensors providing information about the droplets sizes. Experimental activity will cover both batch as well as continuous operation modes. Collected data will be consequently used to develop engineering model based on computational fluid dynamic of the fluid flow coupled with population balances to describe coalescence and breakup of dispersed phase for various levels of dispersed phase viscosity. An extension of this activity will be process of spherical agglomeration where dispersed phase will contain particles (nanoparticles or crystals), which can undergo agglomeration and thus increasing the viscosity of the dispersed phase. Developed model will be validated against experimental data collected at various scales or operating conditions.

Gas - Liquid Mass Transfer. Experimental comparison of various apparatuses performance.

Department: Department of Chemical Engineering, Faculty of Chemical Engineering
Theses supervisor: prof. Dr. Ing. Tomáš Moucha

Annotation

The volumetric mass transfer coefficient (kLa) plays a crucial role in industrial design in the case of the process controlled by gas–liquid mass transfer. Prediction of kLa is nowadays mostly based on literature correlations. Our research goal is to establish suitable kLa correlations for different types of devices that would be based on the experimental dataset. The PhD thesis aim at the comparison of various gas-liquid contactor types from the viewpoint of their mass transfer efficiency. The suitable correlations will be developed that would be viable for mechanically agitated gas–liquid contactors and also for pneumatically agitated gas–liquid contactors such as airlift reactor.

KLa - shear stress coupling to design fermenters better

Department: Department of Chemical Engineering, Faculty of Chemical Engineering
Theses supervisor: prof. Dr. Ing. Tomáš Moucha

Annotation

In fermentation technologies, mechanically agitated aerated vessels are frequently used. In cases of aerobic fermentations, the Oxygen Uptake Rate - OUR is frequently used as the important design parameter. This means that the gas-liquid mass transfer controlled process is considered and the volumetric mass transfer coefficient - kLa is taken as the most important parameter. The practice shows, however, that the impellers with lower Power number (which means lower turbulence intensity and lower kLa) often ensure higher bioprocess efficiency than those with high Power number (which means higher turbulence intensity and higher kLa). The explanation is brought by the fact that microorganisms/biomass might be damaged by the high turbulence intensity as explained further. The turbulence intensity is proportional to shear stresses occuring in the mechanically agitated fermentation batch. A high shear stress may "cut" the microorganisms, which stop producing their primary product then. The aim of the PhD thesis is to measure the quantities proportional to shear stress values at the process conditions of aerobic fermentations and couple them with the kLa values, which are already at disposal in the Mass Transfer Lab database at UCT Prague. This data coupling will enable to develope the highly efficient industrial fermenters design tool.

Polymer-based membranes for highly selective removal of CO2 from biogas

Department: Department of Chemical Engineering, Faculty of Chemical Engineering
Theses supervisor: doc. Ing. Petr Kočí, Ph.D.

Annotation

Membrane-based gas separation technology has contributed significantly to the development of energy-efficient systems for natural gas purification. Also CO2 removal from biogas, with CO2 contents exceeding 40% has more recently known rapid growth and development. Major challenge of polymer membranes for gas separation is related to their susceptibility to plasticization at high CO2 partial pressures. CO2 excessively swells the polymer and eases the permeation of CH4, thus reducing the selectivity. Membrane crosslinking is one of the best ways to prevent the plasticization. Mixed matrix membranes (MMMs), consisting of fillers homogeneously dispersed in a polymeric matrix aim at combining the processibility of polymers and the superior separation properties of the porous fillers. Metal-organic frameworks (MOFs) are such materials which have attracted considerable attention due to their tailorable functionality, well-defined pore size, pore tunability and breathing effects. MMMs for biogas upgrading will be prepared with increased permeabilities by choosing proper MOF/polymer combinations and modifying the thermal treatment, employing core-shell MOF materials with high bulk porosity and a selective shell layer.

Solvent and pH stable membranes with ultra-sharp molecular weight cut-off values

Department: Department of Chemical Engineering, Faculty of Chemical Engineering
Theses supervisor: doc. Ing. Petr Kočí, Ph.D.

Annotation

Membrane-based separations currently offer the best strategy to decrease energy requirements and environmental footprint through newly developed solvent resistant nanofiltration (SRNF) or solvent-tolerant nanofiltration (STNF). So-called solvent activation of polymeric membranes involves treatment of an existing membrane by contacting it with solvents or solvent mixtures, which is hypothesized to restructure the membrane polymer through solvatation, increase polymer chain flexibility and organization into suitable structures. This will be verified by systematically treating membranes with different solvents and testing them for the separation of synthetic liquid streams. A high-throughput set-up will be used. Fundamental physico-chemical characterisations of the membranes before and after the treatments will provide insight in the changes at molecular level. The characterization techniques include gas and liquid uptake experiments (diffusivity), PALS (positron annihilation lifetime spectroscopy, to determine free volume element distributions), ERD (elastic recoil scattering, providing elemental analysis in membrane depth profiles), solid state NMR (nuclear magnetic resonance), TGA (thermogravimetric analysis) and DSC (differential scanning calorimetry).

Updated: 18.2.2020 13:59, Author: Jan Kříž

UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373
VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2017
Information provided by the Department of International Relations and the Department of R&D; technical support by the computing centre.
switch to full version